If it's not what You are looking for type in the equation solver your own equation and let us solve it.
-16t^2+72t+24=0
a = -16; b = 72; c = +24;
Δ = b2-4ac
Δ = 722-4·(-16)·24
Δ = 6720
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{6720}=\sqrt{64*105}=\sqrt{64}*\sqrt{105}=8\sqrt{105}$$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(72)-8\sqrt{105}}{2*-16}=\frac{-72-8\sqrt{105}}{-32} $$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(72)+8\sqrt{105}}{2*-16}=\frac{-72+8\sqrt{105}}{-32} $
| 2(6x+3)=14-2(16-3x) | | 7x-8=-5x+40 | | -5(3x-6)=109 | | 8(x-3)+11=8x-13 | | 3(x+5)=-39 | | -5(3x+6)=45 | | f(-2)=0.9(0.6)^-2 | | 3(4x-5)=-70 | | 1/2(x-46)=4+5x | | 4-9x=-`4 | | 4x+2+3x+24=189 | | 11(x+6)=143 | | X^2+1.3x=1.69 | | 8x-4=-6x+66 | | 6(x-6)=-72 | | X^+1.3x=1.69 | | 6(x+4)=-78 | | 25x3=33 | | 7x+3+x-x=11 | | 6(x+5)=-84 | | -4x+5x=x | | x÷12=7.5x | | x÷12=7.5 | | 3t+15t-14t+-2t-9t=-14 | | (2x+11)+29=180 | | 57.6=8x | | 8x-3=-6x+53 | | x10.6=16.9 | | (2x-3)+(4x)=180 | | v-1.36=4.2 | | 4x=-8-48 | | 10x-7×=9+6 |